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A mathematical framework for translational Brownian motion on hypersurfaces is pre-
sented, using an imbedding of the surface and Ito diffusions in the ambient space. This in-
cludes a survey of Ito calculus and differential geometry. Computational methods for time
correlation functions relevant to spin relaxation studies on curved interfaces are given, and ex-
plicit calculations of time correlation functions and order parameters for a “Rippled” surface
are presented.
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1. Introduction

This paper presents a mathematical framework for translational diffusion processes
on hypersurfaces, in particular, two-dimensional surfaces imbedded in three-dimensional
space. The framework is needed in studies of molecular diffusion at interfaces and spin
relaxation studies using NMR or EPR. Molecular translational diffusion along curved
interfaces may be studied using spin relaxation since the curvature of the interface intro-
duces a time-modulation of a spin-lattice Hamiltonian and, thus, becomes a relaxation
mechanism. In spin relaxation studies of heavy water or deuterated lipids the quadrupole
interaction is the dominant relaxation mechanism and is, thus, modulated by translational
diffusion along curved interfaces in the strong narrowing regime of BWR theory, cf. [1].
The time correlation function is the relevant quantity we need in order to describe spin
relaxation rates and line shapes. Translational diffusion of a particle moving along a
curved two-dimensional surface is described by a set of stochastic differential equations
which can be simulated numerically to obtain the relevant time correlation functions.
We formulate diffusion problems on hypersurfaces of arbitrary dimension�2. We use
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the method of imbedding to construct Ito diffusions on hypersurfaces, similar to [2],
where Brownian motion on hypersurfaces is considered. Our construction for general
Ito diffusions is outlined as a remark in [3, p. 253], but to our knowledge, no one has
presented a detailed account of the method. The first account of the Ito integral as well
as stochastic differential equations on manifolds are due to Kiyosi Ito [4,5]. There is an
extensive literature on diffusions on manifolds, we refer to the monographs [3,6–9].

The paper is organized as follows. We start with a short review of Brownian mo-
tion in section 2. We show that Brownian motion is a Markov process (2), and that it is
a martingale (4). We note that it has a multinormal distribution and compute its covari-
ance matrix (6). An important scaling property is stated in (8), and we define standard
Brownian motion in (9). Finally, we give a short account for the Wiener measure.

In section 3 the Ito integral is defined, which is the fundamental tool in Ito’s sto-
chastic calculus. We give a simple example of an Ito integral in example 1.

In section 4, a special case of Ito’s formula for transformations of Ito integrals (17)
is given. This leads to the informal basic rules (19) of Ito’s calculus.

The tranformation rules in (16) lead naturally to the definition of a larger class
of stochastic processes described by Ito integrals (20), theIto processes, considered in
section 5.

Analogously to the transformation of Brownian motion in section 4, we consider
transformations of Ito processes in section 6. The basic result is that the transformation
of an Ito process is again an Ito process, and the transformation of coefficients in the
corresponding Ito integral (21) is given by the general Ito’s formula (25)–(27). More-
over, in case the transformation is a diffeomorphism, we may transform coefficients in
the other direction (28), (29).

We consider a more restricted class of Ito processes in section 7, theIto diffusions,
which are solutions to an Ito stochastic differential equation (SDE) given in (31). Then
a transformation of an Ito diffusion is again an Ito diffusion, and in this case, the general
Ito’s formula (25) takes a particularly simple form (32), henceforth calledIto’s formula.
The drift vector and diffusion matrix of the transformed Ito SDE are computed by a
second-order scalar differential operatorL (33) and a first-order vector differential oper-
atorD (34) associated with the original Ito SDE. Then we state a scaling relation for Ito
diffusions, where the Ito SDE for a scaled Ito diffusion (35) is given in (36) and (38).

In section 8 we elaborate the definition of a hypersurface as a level set of a smooth
function F , and then give the construction of Ito diffusions on a hypersurface by the
imbedding method in theorem 1. The basic idea is to start with an Ito diffusionXt
onRn, satisfying an Ito SDE (31), and to choose the diffusion matrix and drift vector in
such a way (conditions (40) and (41)) that an Ito diffusion starting on the hypersurface
remains on the hypersurface for all times, which is equivalent to dF(Xt) = 0 in the sense
of Ito’s calculus. To be noted is that the diffusions are defined in the ambient spaceR

n,
so no local parametrization of the hypersurface is needed. Moreover, the diffusions may
be simulated using standard numerical methods for Ito SDEs.

In section 9 we define Brownian motion on a hypersurface by choosing the dif-
fusion matrixB(X) to be the projection onto the tangent space atX (43), hence, sa-
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tisfying (41), and then choosing the drift vectorA(X) to be the normal vector atX,
satisfying (40).

In section 10 we assume that the hypersurface has a local parametrization
f (x1, . . . , xn−1), and want to find an Ito SDE for the local coordinatesxt defined by (45).
We extend the local parametrization to a local flattening diffeomorphismf (x1, . . . , xn)

defined by the property (46), define local basis vectorsfi and dual basis vectorsf i, de-
fine metric tensors (51) and compute the coefficients of the Ito SDE by Ito’s formula (54),
transformed to thex-coordinates by the chain rule (49) and the decompositions (48)
and (55). The resulting transformations ofL andD to local coordinates are given in (56)
and (59), and the resulting Ito SDE forxt is given in (65). Finally, we define a standard
Brownian motion in local coordinates in (66) and get an Ito SDE in local coordinates
driven by a local standard Brownian motion in (67).

As noted previously, the main objective is to compute certain time correlation func-
tions relevant to spin relaxation theory. They are introduced in section 11.

In section 12 we consider a specific surface studied in the literature, which we
call theRippled surface [10,11]. We find a local parametrization in which the standard
Brownian motion coincides with the local Brownian motion. We may then reduce the
computation of functionals of the standard Brownian motion of the Rippled surface to
a standard Brownian motion on a finite interval with periodic boundary conditions. As
a consequence we get our main result in theorem 3, a generalized Fourier series repre-
sentation of correlation functions on the Rippled surface. In particular, we get the decay
rates explicitly in (86) and also an explicit calculation of order parameters in (94).

In the appendix, order parameters for the Rippled surface are given (appendix B)
and elliptic integrals are specified (appendix C).

2. Brownian motion

In this section, we review the theory of Brownian motion inRn. This is a stochas-
tic process onRn, i.e., a mappingW :R+ ×�→ R

n, usually written as a parametrized
family of random variablesWt :� → R

n, t ∈ R+, over some sample space�. Physi-
cally, for n = 3 (three-dimensional space) this is a description of the irregular motion of
small particles in suspensions, on a timescale much larger then the autocorrelation time
of the velocity, cf. [12].

A stochastic processWt is said to be a Brownian motion (with diffusion constant
K > 0) starting atX0 ∈ Rn if

1. W0 = X0.

2. It has stationary, independent increments, i.e.,Wt − Ws andWt+h − Ws+h
have the same distributions for alls, t, h > 0, andWt1 −Wt0,Wt2 − Wt1, . . . ,
Wtk −Wtk−1 are independent random variables for all 0� t0 < t1 < · · · < tk ,
k ∈ N.
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3. For everyt > 0, Wt has a Gaussian distribution with meanm = 0 and co-
variance matrixC = 2KtI , i.e.,Wt = (W 1

t ,W
2
t , . . . ,W

n
t ) have the probability

density

fWt (X)=
(
(2π)ndet(C)

)−1/2
e−(1/2)(X−m)·C−1(X−m)

= (4πKt)−n/2e−‖X‖2/(4Kt), X ∈ Rn. (1)

4. It has continuous sample paths, i.e.,t 
→ Wt(ω) is almost surely continuous.

Let us first note that sinceWt has stationary increments,Wt −Ws andWt−s have
the same distributions,

fWt−Ws = fWt−s , t > s,

hence, the incrementWt − Ws is Gaussian with meanX0 and covariance matrix
2K(t − s)I .

Furthermore, sinceWt has independent increments,

fWt0,...,Wtk (X0, . . . , Xk) = fWt0(X0)fWt1−Wt0(X1 −X0) · · · fWtk−Wtk−1
(Xk −Xk−1).

Consequently, conditional probability densities can be computed as

fWtk |Wt0,...,Wtk−1
(Xk | X0, . . . , Xk−1)≡

fWt0,...,Wtk (X0, . . . , Xk)∫
fWt0,...,Wtk (X0, . . . , Xk−1, Y )dY

= fWtk−Wtk−1
(Xk −Xk−1)

= fWtk |Wt0(Xk|Xk−1). (2)

Hence,Wt is aMarkov process. Moreover, for conditional expectations we get

E(Wtk |Wt0, . . . ,Wtk−1)≡
fWt0,...,Wtk (X0, . . . , Xk)∫

YfWtk |Wt0,...,Wtk−1
(Y | X0, . . . , Xk−1)dY

=Xk−1, (3)

i.e., with the usual identification of conditional expectations with functions of the condi-
tioning variables (Wt0, . . . ,Wtk−1 in this case),

E(Wtk |Wt0, . . . ,Wtk−1) = Wtk−1. (4)

Hence,Wt is amartingale. Finally, (Wt0,Wt1 −Wt0, . . . ,Wtk −Wtk−1) is Gaussian with
mean 0 and covariance matrix

C(Wt0,Wt1 −Wt0, . . . ,Wtk −Wtk−1) = 2Kt0I ⊕ (t1 − t0)I ⊕ · · · ⊕ (tk − tk−1)I, (5)

so, by the transformation properties of multidimensional Gaussian variables,(Wt0,

Wt1, . . . ,Wtk ) is also Gaussian with mean 0, and the covariance matrix may be com-
puted according to

C(Wt0,Wt1, . . . ,Wtk ) = 2KM
(
t0I ⊕ (t1 − t0)I ⊕ · · · ⊕ (tk − tk−1)I

)
MT, (6)
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whereM is the matrix of the mappingRn(k+1) → R
n(k+1) : (X0, . . . , Xk) 
→ (X0,

X0+X1, . . . , X0+X1+· · ·+Xk). This covariance matrix consists of a(k+1)×(k+1)
block matrixCij where each blockCij is ann × n matrix given byCij = 2Ktmin(i,j)I .
Consequently,

E(Ws ·Wt) = 2Knmin(s, t). (7)

Moreover, Brownian motionWt onRn with diffusion constantK starting atX0 has
the scaling property that

W̃t = LWT t (8)

is a Brownian motion onRn with diffusion constantKL2T , starting atLX0. Thus, we
may choose time scaleT such that the diffusion constant isK = 1/2, and then we
say that we have astandard Brownian motion. In this case we denote the conditional
probability density

p(X, t | X0, t0) =
(
2π(t − t0)

)−n/2
exp

(
− |X −X0|2

2(t − t0)
)
, (9)

wheret , t0 ∈ R+ andX,X0 ∈ Rn. The rigorous mathematical definition of Brownian
motion was given by Norbert Wiener in 1923 [13], where Brownian motion is defined
in terms of a measure on the space of continuous paths onR

n, and this is usually called
thecanonical Brownian motion. Let us consider the definition of the Wiener measureW
in some detail. The Wiener-measurable sets are generated (as aσ -algebra) by sets of
paths specified by the condition that they pass through a finite number of measurable
setsE1, . . . , Ek in Rn (Borel sets) at a finite number of specified time instants 0< t1 <
· · · < tk, and the Wiener measure of such acylinder set is computed by the formula

W
({
ω: ω(t1) ∈ E1, . . . , ω(tk) ∈ Ek

}) =∫
E1

· · ·
∫
Ek

p(X1, t1 | X0, t0)p(X2, t2 | X1, t1) · · ·p(Xk, tk | Xk−1, tk−1)dX1 · · · dXk.

(10)

The Wiener measure defines a Markov process on the path space with transition function
p(X, t | X0, t0), namely, thecoordinate process

Wt(ω) = ω(t). (11)

For more details on Browian motion and Wiener measure, see, for example, [12,14–16].
Note that the Wiener measure assigns values tosets of continuous paths, not indi-

vidual paths themselves, and that singleton sets{ω} have Wiener measure zero. A prop-
erty of a path is said to be asample path property for Brownian motion, or to holdalmost
surely, if the property holds for all paths except for a set of paths with Wiener measure 0.
For example, the famous Lévy–Hölder condition (cf. [17, p. 36] and [16, p. 30]) says that

lim sup
t2−t1=ε↘0,0�t1<t2<1

|ω(t2)− ω(t1)|√
2ε ln(1/ε)

= 1 (12)
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is a sample path property. Also, it follows from the Lévy condition above that to be
continuous, nowhere differentiable, and of infinite variation is a sample path property.

3. The Ito integral

We would like to define a path integral

It (ω) =
∫ t

0
f (τ, ω)dWτ(ω) (13)

of anm× n-matrix-valued functionalf (τ, ω) over a continuous pathω, but since such
a path is almost surely of infinite variation, the usual Lebesgue–Stieltjes definition does
not apply. However, the sums do converge in a mean square sense, more precisely, in
the space of square-integrable functions with respect to the Wiener measure, provided
the functionalf (t, ω) depends only on the values ofWs(ω) for s � t in a precise,
measure-theoretic sense (the functional is said to beadapted toWt ) and∫ t

0

∥∥f (τ, ω)∥∥2
dτ <∞ (14)

almost surely, cf. [18, p. 35] and [6, p. 24]. The Ito integral was first introduced by
Ito in [4]. The convergence of the approximating sums is a consequence of theIto
isometry [18, p. 26–29]

E

(∥∥∥∥ ∫ t

0
f (τ, ω)dWτ(ω)

∥∥∥∥2)
= E

(∫ t

0

∥∥f (τ, ω)∥∥2
dτ

)
, (15)

whereE(X) denotes the expectation
∫
X(ω)dW(ω) of the stochastic variableX, and

‖ · ‖ denotes the usual vector or matrix norm, i.e.,‖f ‖2 is the sum of the square of each
element. We consider a simple example.

Example 1. Let Wt be a standard one-dimensional Brownian motion. Consider the
Ito integral

∫ t
0 Wτ dWτ and the approximating sumSk = ∑k−1

j=0Wτj (Wτj+1 − Wτj ),
whereτj = j t/k, j = 0,1, . . . , k. The approximating sum may be written asSk =
W 2
t /2−a/2, wherea = ∑k−1

j=0(Wtj+1 −Wtj )2. Using the fact thatE((Wτj+1 −Wτj )2) =
E(W 2

τj+1−τj ) = τj+1 − τj we getE(a) = t . To compute the variance ofa, we first

get a − E(a) = ∑k−1
j=0(Wτj+1 − Wτj )2 − (τj+1 − τj ). Then, expanding the square

of the sum inE((a − E(a))2) and using the fact thatWt has independent increments
we get the variance ofa,

∑k
j=0E(((Wτj+1 − Wτj )2 − (τj+1 − τj ))2). Finally, expand-

ing the squares and using the fact thatE((Wτj+1 − Wτj )4) = 3(τj+1 − τj )2 we get

E((a − E(a))2) = 2
∑k−1
j=0(τj+1 − τj )2. Hence, the variance converges to 0 ask→ ∞,

and the Ito integral is
∫ t

0 Wτ dWτ = W 2
t /2− E(a)/2 = W 2

t /2− t/2.
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The definition ofIt in the mean square sense for each fixedt > 0 is analogous to
the definition of the classicalL2-spaces. Thus, the Ito integralIt is an equivalence class
of Rm-valued functionals on the continuous paths, andIt (ω) is almost surely defined.

The Ito integralIt defines a stochastic process onRm, if f is anm× nmatrix. The
processIt is easily seen to be adapted, and from the important fact thatIt is amartingale
(cf. [18]) it follows that continuity with respect tot is a sample path property forIt (one
says thatIt hascontinuous sample paths), cf. [6, p. 24].

4. Transformations of Brownian motion

Obviously, the method of computing Ito integrals from the definition, used in ex-
ample 1, is rather awkward. We should have an analog of the fundamental theorem of
calculus. This is provideed by the special case of theIto formula (17) below. Ifg is a
functionR× Rn → R with continuous second derivatives, andf (τ, ω) = g(τ,Wτ (ω))
in the Ito integral above, then it follows by the approximation procedure defining the Ito
integral and properties of the Brownian motion, that

g(t,Wt (ω))= g(0,0)+
∫ t

0

(
∂g

∂t

(
τ,Wτ (ω)

)+ 1

2
(∇ · ∇g)(τ,Wτ (ω)))dτ

+
∫ t

0
(∇g)(τ,Wτ (ω)) · dWt(ω). (16)

This formula is a special case ofIto’s formula (25) below, and is usually written in
differential form,

dg(t,Wt ) =
(
∂g

∂t
(t,Wt )+ 1

2
(∇ · ∇g)(t,Wt )

)
dt + (∇g)(t,Wt) · dWt. (17)

It is convenient to summarize this formula in terms of a Taylor expansion

dg= ∂g
∂t

dt + (∇g) · dW + 1

2

∂2g

∂t2
dt2

+ 1

2

(
∇ ∂g
∂t

)
dWt dt + 1

2
(∇ ⊗ ∇g) : dWt ⊗ dWt

+ 1

6
(∇ ⊗ ∇ ⊗ ∇g) :: dWt ⊗ dWt ⊗ dWt + · · · (18)

and the followingbasic rules for the Ito calculus:

dWt ⊗ dWt = I dt, dW dt = 0, dt dt = 0, dWt ⊗ dWt ⊗ dWt = 0. (19)

Example 2. We have now a simpler method to compute the integral
∫ t

0 Wτ dWτ . Choose
g(t,X) = X2/2 (which would be a primitive function of our integrandX in classical
calculus). Ito’s formula (17) yieldsW 2

t = g(Wt) =
∫ t

0 g
′(Wτ )dWτ + (1/2)g′′(Wτ )dτ =∫ t

0 Wτ dWτ + (1/2)t .
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5. Ito processes

The formula (17) leads to the notion of anm-dimensionalIto process driven by
n-dimensional Brownian motionWt , which is anm-dimensional stochastic processXt
given by a sum of a usual integral and an Ito integral,

Xt = X0 +
∫ t

0
A(τ, ω)dτ + B(τ, ω) · dWτ . (20)

This is usually written is the differential form

dXt = A(t, ω)dt + B(t, ω) · dWt . (21)

Here,A is a vector, thedrift vector, andB is a matrix, thediffusion matrix, of the Ito
process. For a review of the tensor notation used, see appendix. For the integral of the
right-hand side of (20) to be defined, we require that∫ t

0

∥∥A(τ, ω)∥∥+ ∥∥B(τ, ω)∥∥2
dτ <∞ (22)

for all t > 0 almost surely, and thatA,B are adapted, cf. [18, pp. 34 and 44].

6. Ito’s calculus

Suppose thatXt is anm-dimensional Ito process (21), and thatx : Rm → R
k

is a twice continuously differentiable vector-valued function. Then it follows from the
definition of the Ito integral and the basic rules (18) and (19) thatxt = x(Xt ) is a
k-dimensional Ito process driven by the samen-dimensional Brownian motionWt as
Xt , and satisfying the equation

dxt = dXt · (∇ ⊗ x)(Xt )+ 1

2
(dXt ⊗ dXt) : (∇ ⊗ ∇ ⊗ x)(Xt ), (23)

and (19) amounts to

dXt ⊗ dXt = (Adt + B · dWt)⊗ (Adt + B · dWt) =
(
B · BT

)
dt. (24)

Hence, we obtain

dxt = a(t, ω)dt + b(t, ω) · dWt, (25)

soxt is an Ito process onRk with drift vector

a(t, ω) = A(t, ω) ·(∇ ⊗x)(Xt(ω))+ 1

2

(
B(t, ω) ·BT(t, ω)

)
: (∇ ⊗∇ ⊗x)(Xt(ω)) (26)

and diffusion matrix

b(t, ω) = (∇ ⊗ x)T(Xt(ω)) · B(t, ω). (27)

In casem = n andx is a diffeomorphism, (25) provides a change of variables formula
for Ito processes, and we say thatxt is the Ito process obtained fromXt by the change of
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variablesx = x(X). In this case,∇ ⊗ x is invertible, and we can computeA,B in terms
of a, b, namely,

B(t, ω) = J T(Xt(ω)) · b(t, ω) (28)

and

A(t, ω) = a(t, ω) · J (Xt(ω))− 1

2

(
B ·BT

)
(t, ω) : J

(
Xt(ω)

) · (∇ ⊗ x)−1
(
Xt(ω)

)
, (29)

whereJ is the Jacobian ofX 
→ x,

J (X) = (∇ ⊗ x)−1(X).

In casex is a scalar function (m = 1), Ito’s formula can be written

dxt = dXt · (∇x)(Xt )+ 1

2

(
B · BT) dt : (∇ ⊗ ∇x)(Xt ). (30)

7. Ito diffusions

If A andB in an Ito processXt in (21) depends only onXt(ω) itself, we say
that (21) is anIto stochastic differential equation:

dXt(ω) = A
(
Xt(ω)

)
dt + B(Xt(ω)) · dWt, (31)

and we say thatXt is anIto diffusion. Under natural conditions onA andB, the exis-
tence and uniqueness of initial value problems for an Ito diffusion satisfying (31) can be
established. We refer to [18] for details.

Suppose thatXt is an Ito diffusion satisfying (31), andxt = x(Xt) defined as
above. Thenxt is also an Ito diffusion, satisfying the Ito stochastic differential equation

dxt = Lx(Xt)dt + dWt ·Dx(Xt), (32)

whereL andD aredifferential operators defined by

Lx(X) = A(X) · (∇ ⊗ x)(X)+ 1

2

(
B(X) · BT(X)

)
: (∇ ⊗ ∇ ⊗ x)(X) (33)

and

Dx(X) = BT · (∇ ⊗ x)(X). (34)

Moreover,Xt fullfills a scaling relation similar to the well-known Brownian scal-
ing, namely, that the process

LXT t (35)

is equal in distribution with an Ito diffusioñXt satisfying the Ito equation

dX̃t = Ã
(
X̃t
)

dt + B̃(X̃t) dW̃t . (36)
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HereW̃t is a standard Brownian motion obtained by the Brownian scaling

W̃t = T −1/2WT t, (37)

and the scaled drift vector and diffusion matrix is

Ã
(
X̃
) = LTA(X̃/L), B̃

(
X̃
) = LT 1/2B

(
X̃/L

)
. (38)

8. Ito diffusions on hypersurfaces

By a smooth hypersurface inRn we mean a level setF−1(c) of a smooth function
F :Rn → R such that∇F(X) �= 0 for all X ∈ F−1(c) (cf. [19]). Hence, with this
definition all hypersurfaces are orientable (cf. [20, p. 146]). Moreover, a hypersurface
in Rn is a smooth imbedding inRn of codimension 1 as a consequence of the implicit
function theorem (cf. [21, p. 31]). The valuesc ∈ R for whichF−1(c) is a hypersurface
are calledregular values for F . By Sard’s theorem (cf. [22, p. 11]), the set of values
which are not regular has Lebesgue measure 0. Hence,F−1(c) is a hypersurface for a
dense set of valuesc ∈ R. We assume henceforth thatc = 0 is a regular value, and
denoteF−1(0) byM. The following theorem gives a necessary and sufficient condition
for the Ito diffusionXt in (31) to be onM.

Theorem 1 (Imbedding method). Assume thatXt is an Ito diffusion onRn given
by (31), and that 0 is a regular value for a given smooth functionF :Rn → R. Let
M = F−1(0), and let be defined by

N(X) = ∇F(X)
‖∇F(X)‖ (39)

the corresponding normal vector field, defined in a neighbourhood ofM. Also assume
thatX0 ∈ M. ThenXt ∈ M for all t > 0 almost surely, if and only ifA andB in (31)
fulfill the conditions

A(X) · N(X)+ 1

2

(
B(X) · BT(X)

)
: (∇ ⊗N)(X) = 0 (40)

for all X ∈ M, and

BT(X) ·N(X) = 0 (41)

for all X ∈ M. Moreover, if (40) and (41) hold, the differential operatorsL, defined
by (33), andD, defined by (34), are well-defined differential operators onM.

Proof. Let xt = F(Xt). Then by Ito’s formula (32), dxt = LF(Xt)dt+dWt ·DF(Xt).
By uniqueness of solutions to Ito SDE’s (cf. [18]),xt = 0 almost surely if and only if
dxt = 0. This is equivalent toLF(Xt) = 0 andDF(Xt) = 0 by the independence of
the Ito differentials dWt and the ordinary differential dt (interpreted as Ito integrals, as
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usual). Obviously,DF(X) = 0 onM is equivalent to (41) in view of (39). Furthermore,
provided (41) holds,LF(X) = 0 onM is equivalent to (40) since

(∇ ⊗N) =
(∇ ⊗ ∇F

‖∇F‖ + ∇
(

1

‖∇F‖
)

⊗ ∇F
)

and (
B · BT) :

(
∇
(

1

‖∇F‖
)

⊗ ∇F
)

=
(
BT · ∇

(
1

‖∇F‖
))

· (BT · ∇F ) = 0. (42)

If φ :Rn → R is a function which is constant onM, then∇φ = ψN onM for
some smooth functionψ :Rn → R, and

Dφ = ψBT · N = 0

onM by (41), which shows thatD is a well-defined linear operator onM. Furthermore,

Lφ = ψ
(
A ·N + 1

2

(
B · BT

)
: (∇ ⊗ ∇N)

)
+ 1

2

(
BT · B) : (∇ψ ⊗N) = 0

onM by (40) and a similar computation as (42), which shows thatL is a well-defined
linear operator onM. This proves the theorem. �

Remark 1. The condition (41) means that the range ofB(X) should be in the tangent
space ofM at X for all X ∈ M, and the condition (40) means a specification of the
normal component of the drift vector, in terms of the diffusion matrixB. Hence, the
diffusion matrix is singular (has rankn − 1), and the probability density ofXt is a
singular measure, supported on the hypersurface (in fact, having a smooth probability
density on the surface). Also, we see that the conditions onA andB depends onN ,
hence, independent of the particular choice of functionF representingM as a level
set. With this imbedding method, Ito diffusions onM may be numerically simulated by
standard methods for Ito diffusions inRn, cf. [23,24]. Applications of this method to
problems in relaxation theory are in progress and will be reported elsewhere. Related
work of the authors may be found in [25].

9. Brownian motion on hypersurfaces

In this section we use the imbedding method of theorem 1 to define a natural gen-
eralization of standard Brownian motion to a smooth(n − 1)-dimensional imbedded
surface inRn. By the scaling relation in section 7, we may also define Brownian motion
with a diffusion constant on the hypersurface.

To define Brownian motion onM, we chooseB(X) to be the projection onto the
tangent plane of the level setM of F atX, i.e.,

B(X) = I − N(X)⊗N(X). (43)
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Clearly, this choice ofB satisfies (41). Then we chooseA(X) be the a normal vector
field, hence, completely specified by (40), i.e.,

A = −1

2

(
B(X) · BT(X)

) : (∇ ⊗N)(X)N(X). (44)

The restriction of the vector-valued first-order operatorD and the scalar-valued second-
order operator 2L to the level setM are called thecovariant derivative or gradient onM,
and theLaplace–Beltrami operator onM, respectively.

10. Local coordinates

So far we have considered the(n − 1)-dimensional hypersurface imbedded inRn,
as an implicitly defined surface, which often is convenient. However, sometimes we
are given local coordinates for the imbedded hypersurface, which we consider in this
section.

We henceforth assume thatXt is a standard Brownian motion onM, as defined in
section 9. Letf :U → M be a local coordinate patch onM. We will calculate the Ito
equation forXt in local coordinates, i.e., the Ito equation forxt where

f (xt) = Xt. (45)

Given the local parametrizationf (x1, . . . , xn−1) ∈ Rn and a functionF :Rn → R such
that F(f (x1, . . . , xn−1)) ≡ 0, we extendf to a mappingRn → R

n such that in a
neighbourhood off (U),

F
(
f
(
x1, . . . , xn−1, xn

)) = xn, (46)

i.e.,f (·, xn) is a parametrization of the level set ofF at levelxn (for all xn in some open
interval containing 0). The extensionf (x1, . . . , xn) is defined as

f
(
x1, . . . , xn

) = φ(xn),
whereφ is the unique solution to the initial value problem

dφ(t)

dt
= ∇F(φ)

‖∇F(φ)‖2
, φ(0) = f (x1, . . . , xn−1

)
.

Next, we do a change of coordinates by the diffeomorphismf constructed above.
To compute derivatives in thex-coordinates we apply the chain rule,

∇X = (∇X ⊗ x) · ∇x = (∇x ⊗X)−1 · ∇x.
Let the vectorsf1, . . . , fn be the row vectors of∇x ⊗ X, i.e., fj = ∂f/∂xj . Clearly,
fj (x

1, . . . , xn), j = 1, . . . , n − 1, are tangent vector fields to the level setsF = xn,
andfn(x1, . . . , xn) is a normal vector field to the same level set. Moreover,f1, . . . , fn
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are linearly independent, and hence, constitute a frame inR
n, sincef is a local diffeo-

morphism. We define the dual basisf 1, . . . , f n as the column vectors of(∇x ⊗ X)−1,
hence,

f i · fj = δij , (47)

and we have the natural decomposition of the identity matrix,

I =
n∑
i=1

f i ⊗ fi =
n∑
i=1

fi ⊗ f i. (48)

Moreover, the chain rule can be written

∂

∂xj
= fj · ∇, j = 1, . . . , n, or equivalently, ∇ =

n∑
i=1

f i
∂

∂xi
. (49)

Also, differentiation of (47) yields

∂f i

∂xk
· fj = −f i · ∂fj

∂xk
. (50)

The matrices

G = (∇ ⊗X) · (∇ ⊗X)T and G−1 (51)

are called the contravariant and covariant metric tensors, and we denote their elements

gij = fi · fj , gij = f i · f j . (52)

The metric tensorG is thus decomposed into a “tangential” and a “normal” part

G = G‖ ⊕G⊥ =
(
G‖ 0

0 G⊥

)
, (53)

whereG‖ is the usual covariant metric tensor of the level set.
We have seen by Ito’s formula (32), applied to the Ito diffusionXt and the mapping

x(X), thatxt is an Ito diffusion with drift vectora and diffusion matrixb given by

a(x) = Lx(X(x)), b(x) = Dx(X(x)). (54)

Hence, to computea andb we must transformL andD to thex-coordinates. From
the decomposition (48) and the fact that{f1, . . . , fn−1} as well as{f 1, . . . , f n−1} span
the tangent space we have that the projection onto the tangent space is

B =
n−1∑
i=1

f i ⊗ fi =
n−1∑
i=1

fi ⊗ f i. (55)

The operatorD in local coordinates is then

D = BT · ∇ =
n∑
j=1

(
f j ⊗ fj

) · ∇ =
n∑
j=1

f j (fj · ∇) =
n∑
j=1

f j
∂

∂xj
. (56)
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To transformL to local coordinates, first note that sinceB is a projection we have
BT = B andB2 = B, hence,

B · BT = B. (57)

By a similar computation as (42), we may writeA in the form

A = −1

2

(
B · BT) : (∇ ⊗ f n)fn (58)

and then use (57), (48), (49) and (50) to compute the first-order term ofL,

A · ∇ = 1

2

n−1∑
i=1

n∑
j=1

gij
∂fj

∂xi
· f n ∂
∂xn
.

A similar computation shows that the second-order term ofL is

1

2

(
B · BT) : (∇ ⊗ ∇) = 1

2

n−1∑
i=1

n∑
j=1

gij

(
∂2

∂xj ∂xk
−

n∑
k=1

∂fi

∂xj
· f k ∂
∂xk

)
.

Hence, when adding the first- and second-order terms to computeL the ∂/∂xn-terms
cancel and we get

L = 1

2

n−1∑
i,j=1

gij

(
∂2

∂xi∂xj
−
n−1∑
k=1

∂fi

∂xj
· f k ∂
∂xk

)
. (59)

The absence of∂/∂xn is a reflection of the fact thatL is a differential operator
onM. We introduce the common notation

4kij ≡ ∂fi

∂xj
· f k (60)

which are commonly called theChristoffel symbols. Hence, in view of the decomposi-
tion (48),

∂fi

∂xj
=

n∑
k=1

4kij fk. (61)

Now we may compute the drift vector and diffusion matrix in local coordinates,

a = Lx = −1

2

n−1∑
i,j,k=1

gij4kij ek (62)

and

b = Dx =
n−1∑
i=1

f i ⊗ ei, (63)
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where(e1, . . . , en) = I , i.e.,ej , j = 1, . . . , n is the standard basis inRn. Miraculously,
the Christoffel symbols may be computed from the metric tensor components,

4kij = 1

2
gkl
(
∂glj

∂xi
+ ∂gil
∂xj

− ∂gij
∂xl

)
. (64)

Substituting (62) and (63) in (54) and using (48) and (52) we get the following Ito
equations for the local coordinates of a standard Brownian motion onM:

dxit = −1

2
4ijkg

jk dt + gij (fj · dWt), i = 1, . . . , n− 1. (65)

This is an(n−1)-dimensional Ito equation driven by ann-dimensional standard Brown-
ian motion. For computational purposes it is advantageous to reformulate it to an Ito
equation driven by an(n − 1)-dimensional standard Brownian motion. To this end, let
the Ito diffusionwt in the patchU be defined by

dwit =
(
g1/2

)
ij
f j · dWt, (66)

where((g1/2)ij ) = G1/2 is the symmetric positive square root ofG. Then

dwit dw
k
t = (

g1/2
)
ij

(
g1/2

)
kl
gjl dt = δik dt.

Consequently,wt is a Brownian motion in the local coordinate patch, cf. [18, p. 145].
Hence,xt is given by the Ito equation

dxit = −1

2
4ijkg

jk dt + (
g1/2)ij dwjt , (67)

where((g1/2)ij ) = (G−1)1/2 = G−1/2 is the symmetric positive square root ofG−1.

11. Correlation functions

Interaction of the anistropic molecular environment with an ensemble of nuclear
spins whose is described by a semiclassical Hamiltonian, which consists of spin oper-
atorsÂ, acting on spin degrees of freedom (wave functions), and classical lattice func-
tionsF , introducing stochastic time dependence in the Hamiltonian. Both are expressed
in spherical tensor componentŝAIk , F

I
k , k = −I, . . . , I , andI = 0,1,2, . . . , such that

H(t) =
∑
I

I∑
k=−I
(−1)kÂI−kF

I
k (t). (68)

The spherical tensor components could be evaluated either in a fixed laboratory
frame, in which the spherical tensor components of the tensor operatorA are constant,
or in a fixed molecular frame, in which the spherical tensor components of the lattice
function are constant. Assume that the components in (68) are evaluated in the labo-
ratory frame. The lattice function components are then stochastic functions because of
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molecular reorientation and translations [26–30]. It is convenient to introduce a local di-
rector framed on the surface where the surface normal defines thez-axis of thed-frame.
Local molecular reorientations are then taken into account by the Euler angles�dM ,
describing the rotation from the director framed to the molecular fixed principal frame
M, whereas the reorientation due to lateral diffusion is taken into account by the Euler
angles�Ld for the rotation from the lab frameL to the local director framed. The lab
frame spherical tensor components ofF in the lab frame are, thus,

FL,Im (t) =
I∑

k,;=−I
DI∗mk

(
�Ld(t)

)
DI∗k;

(
�dP (t)

)
F
M,I
; .

Here the superscripts refer to components in the lab frameL, the local director framed
and the molecular fixed frameM, respectively.

Generally a Hamiltonian which is only modulated by translational diffusion along
a surface is obtained by introducing a partially averagedF , denoted by an overbar,

F
L,I
m (t) =

I∑
k,;=−I

DI∗mk
(
�Ld(t)

)
DI∗k; (�dP )F

M,I
; .

This formulation presupposes a time scale separation between local reorientation and
lateral diffusion [28]. Furthermore, symmetry arguments often apply, resulting in

I∑
;=−I

DI∗k; (�dM)F
M,I
; = δk0DI∗00(�dM)F

M,I
0

when a cylindrically symmetric tensorFM,I is assumed. Thus, only one spherical com-
ponent of the partially averaged tensor is nonzero and modulated as the spin bearing
molecule is moving along the curved interface. This stochastic time-dependent process
is, thus, described by the orientation of the local normal present in the Wigner rotation
matrix elementDI∗m0(�Ld(t)).

With these observations, the HamiltonianH can be interpreted as a noncommuta-
tive Fourier series on the rotation group [31, p. 256], where the molecule dynamics enter
through the orientational Euler angles�Ld:

H(t)=
∑
I

I∑
k=−I
(−1)kÂL,I−k D

I∗
00(�dM)F

M,I
0 DIk0

(
�Ld(t)

)
=
∑
I

(2I + 1)tr
(
Ĥ (I )DI

(
�Ld(t)

))
, (69)

where the Fourier coefficients are

Ĥ (I )k; = (−1)k
Â
L,I
−k D

I∗
00(�dM)F

M,I
0 δ0;

(2I + 1)
. (70)
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Remark 2. The Wigner rotation matrices are irreducible representations of the rotation
group, so by the “great orthogonality theorem” of Weyl [32], elements of the matrices
are orthogonal with respect to the invariant measure of the rotation group,

2I + 1

8π2

∫ 2π

0

∫ 2π

0

∫ π

0
DIii′(�)D

J∗
jj ′(�) sin(β)dβ dα dγ = δIJ δii′δjj ′, (71)

and the Fourier coefficients ofH(t) = H̃ (�(t)) may be computed by

Ĥ (I ) = 1

8π2

∫ 2π

0

∫ 2π

0

∫ π

0
H̃ (α, β, γ )DI†(α, β, γ ) sin(β)dβ dα dγ, (72)

whereA† denotes the conjugate transpose ofA, i.e.,(A†)ij = A∗
ji , cf. [31].

Experimental data are often connected to autocorrelation functions of the lattice
functions (for example, in the regime of the BWR theory of spin relaxation, all spin
relaxation rates are determined in this way). This motivates the study of correlation
functions of the following general form:

CImn(ρ, t) =
〈
DIm0(�0)D

I∗
n0(�t)

〉
, (73)

where�t = (αt , βt ,0) is the stochastic process obtained by computing spherical an-
gles (β, α) for the surface normal atXt , the canonical Brownian motion onM, with
probability distributionρ(X) for X0 onM.

12. The Rippled surface

In this section we will compute relevant correlation functions for the Rippled sur-
face [10,11] defined by the parametrization(

X1, X2) 
→
(
X1, X2,

a

k
sin
(
kX1)). (74)

It is periodic with period 2π/k in theX1-direction.

Theorem 2.

1. Define the functionφ :R → R by

φ(X) = E( ia)− E(cos(kX), ia)

k
(75)

for 0 � X � π/k, and

φ(X) =
⌊
kX

π

⌋
2E( ia)

k
+ φ

(
X −

⌊
kX

π

⌋
π

k

)
(76)

otherwise. Thenφ is smooth, strictly increasing and

φ′(X) =
√

1 + a2 cos2(kX) (77)
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and

φ

(
X + mπ

k

)
= φ(X)+ 2mE( ia)

k
(78)

for all m ∈ Z.

2. LetXt be a standard Brownian motion onM. Define the mappingf :R2 → R
3

by

f
(
x1, x2

) =
(
φ−1

(
x1
)
, x2,

a

k
sin
(
kφ−1

(
x1
)))
. (79)

Then f is a parametrization of the Rippled surface (74), and the processxt
defined byXt = f (xt ) as in section 10 is a two-dimensional standard Brownian
motion.

Proof. 1. Equation (77), valid forx �= mπ/k,m ∈ Z, is obtained by differentiation
of the elliptic integral and simplification. Furthermore,φ is continuous atX = mπ/k,
m ∈ Z, since

lim
X→π/k−

φ(X)− lim
X→0+

φ(X) =
∫ π/k

0

√
1 + a2 cos(kx)2 dx = 2E( ia)

k
, (80)

which also proves (78). Sinceφ′(X) is extended toX = mπ/k,m ∈ Z, by (77) as a
continuous function, it follows that the formula (77) for the derivative ofφ is valid for
X = mφ/k, m ∈ Z, also. Hence,φ′ is smooth. Moreover,φ is strictly increasing and
bijective, since the derivative is bounded between two positive constants.

2. Clearly, (79) is a reparametrization of (74). We get, in the notation of section 10,

f1(x
1, x2) =

 1

0

−a cos(kφ−1(x1))

 dφ−1

dx1
, f2(x

1, x2) =
 0

1

0

 . (81)

The tangential part of the metric tensor is

G‖ =
(
f1 · f1 f1 · f2

f2 · f1 f2 · f2

)
=
(
(1+ a2 cos2(2πX1(x1))(dφ−1/dx1)2 0

0 1

)
=
(

1 0

0 1

)
, (82)

where the last equality follows from (77), since

dφ−1

dx1
= 1

(dφ/dX1)
= 1√

1 + a2 cos2(kX1)
.
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Hence,4kij = 0 by (64), and subsitution in (67) gives the Ito equation

dxt = dwt

for xt . Hence, dxt is a standard Brownian motion. �

Remark 3. HereE( ia) andE(z, ia) denotes ellipic integrals, see table 1 in appendix C,
and cf. [33] for more information. Depending on the choice of branch cuts forE(z, ia)
at z = ±1, the formula forφ(X) may have singularities atx = mπ/k, m ∈ Z, but a
continuous branch can always be computed by the formulas (75) and (76), where�X�
denotes the largest integer� X.

We are now ready to formulate the main theorem of this paper, a representation
formula for correlation functions on the Rippled surface.

Theorem 3. Let q(X) = q(X1) and r(X) = r(X1) be complex-valued functions de-
fined on the Rippled surface (74), independent ofX2 and periodic inX1 with period
2π/k. Then the correlation function

C(q, r)(t) ≡ 〈
q(X0)r

∗(Xt )
〉

(83)

has the generalized Fourier series representation

C(q, r)(t) =
∞∑

m=−∞
cm(ρq)c

∗
m(r)e

−λmt , (84)

where the Fourier coefficients are given by

cm(q) = 1√
;

∫ 2π/k

0
e−(2π i/;)mφ(X1)q

(
X1
)

dφ
(
X1
)

(85)

and

λm = 2π2m2

;2
(86)

and

; = 4E( ia)

k
(87)

and

ρ
(
X1
) =

∑
j∈Z

∫ ∞

−∞
fX0

(
X1 + 2πj

k
,X2

)
dX2. (88)

Usually we choosefX0 such that the “reduced” probability distributionρ on the interval
[0,2π/k] is constant,ρ(X1) ≡ k/2π .
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Proof. First note that Rippled surface is periodic inx1 with period;. Sincex1
t = w1

t

andx2
t = w2

t are independent, and we are computing correlation function of quantities
which are independent ofx2, we can average over one-dimensional trajectoriesx1

t only.
Moreover, by the periodicity inx1 it suffices to compute trajectories on the interval[0, ;]
with periodic boundary conditions, and initial distributionρ obtained by summing over
all periods (88). For one-dimensional Brownian motion with periodic boundary condi-
tions on the finite interval[0, ;] there is a well-known representation of the conditional
probability densityp(x, t|y,0) as Fourier series, namely,

p(x, t | y,0) = 1

;

∞∑
m=−∞

e2π i m(x−y)/;−2π2m2t/;2. (89)

Consequently,〈
q
(
x1

0

)
r∗
(
x1
t

)〉 = ∫ ∫
p
(
x1, t | y1,0

)
ρ
(
φ−1

(
y1
))
q
(
φ−1

(
y1
))
r∗
(
φ−1

(
x1
))

dx1 dy1

= 1

;

∞∑
m=−∞

e−2π2m2t/;2
[(∫ ;

0
e(2πi/;)mx

1
q
(
φ−1

(
x1
))

dx1

)
×
(∫ ;

0
e−(2π i/;)my1

ρ
(
φ−1(y1))q(φ−1(y1)) dy1

)]
.

Making the change of variablesx1 = φ(X1), y1 = φ(Y 1) yields the representation
formula (84). �

Remark 4. If we choosep, q to be Wigner rotation matrix elements like in the corre-
lation functions (73), they can in general can be written in terms of reduced rotation
matrices (cf. [34, p. 22–24])

D2
j0(α, β) = e−ijαd2

j0(β),

and for the Rippled surface we get

D2
00= 1

2

(
2 − a2 cos(kX1)2

1 + a2 cos(kX1)2

)
, (90)

D2
10=

√
6

2

(
cos(kX1)

1 + a2 cos(kX1)2

)
, (91)

D2
20=

√
6

4

(
a2 cos(kX1)2

1 + a2 cos(kX1)2

)
. (92)

Using the periodicity (78) we may write the Fourier coefficients (85) as

cm(q) = 1√
;

∫ π/k

0
e(−2πi/;)mφ,(X1)

(
q
(
X1)+ (−1)mq

(
X1 + π

k

))
dφ
(
X1), (93)
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whereφ is given by (75). In particular, for the Wigner rotation matrix elements (90) we
see that

cm(D
2
j0) = 0

if m andj have the opposite parity (odd/even or even/odd). In particular, form = 0 we
can obtain the averages〈

D2
j0

〉 = 1

;

∫ 2π/k

0
D2
j0

√
1 + a2 cos

(
kX1

)2
dX1,

in closed form, 〈
D2

00

〉= 1

2

(
3K( ia) − E( ia)

E( ia)

)
, (94)〈

D2
10

〉= 0, (95)〈
D2

20

〉= √
6

4

(
E( ia)−K( ia)

E( ia)

)
. (96)

For definitions of the elliptic integralsE andK, see appendix C. Plots of these aver-
ages as functions ofa can be found in the appendix. The integrals were obtained by first
computing primitive functions symbolically (with Maple V Release 4) and then taking
differences, taking into account the discontinuities of the primitive functions atx = 1/2.

Appendix A. Notation

• R denotes the set of real numbers.

• Rn = {(x1, . . . , xn): x1, . . . , xn ∈ R} denotes then-dimensional space, wheren
is a positive integer. The dimension of a hypersurface isn− 1.

• R+ = {x ∈ R : x > 0} is the set of positive real numbers.

• Z denotes the set of integers.

• �x� denotes the largest integer which is less than or equal to the real numberx.

• z∗ denotes the complex conjugate of the complex numberz. In casez is a vector
or a matrix,z∗ denotes elementwise complex conjugation.

• Wt denotes a Brownian motion inRn, with components(W 1
t , . . . ,W

n
t ).

• I is the identity matrix, with dimension evident from context.

• ω is a sample in a probability space where random variables are defined. For
canonical Brownian motion onRn, ω is a continuous path onRn (i.e., a contin-
uous mappingω :R → R

n).

• E(X) or 〈X〉 is the expectation of the random variableX.

• p(X, t | X0, t0) is the conditional probability density for a standard Brownian
motion, defined in (9).
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• · denotes a general tensor contraction product, applicable to two vectors (ordi-
nary scalar product), a matrix and a vector (ordinary matrix product), defined in
general by

(A · B)i1...ik−1j2...jl =
∑
m=1n

Ai1...ik−1mBmj2...jl .

• : denotes a double contraction,

(A : B)i1...ik−2j3...jl =
n∑

m1,m2=1

Ai1...ik−2m1m2Bm1m2j3...jl .

• :: denotes a triple contraction (analogous to:).
• ‖A‖ denotes the norm of the vector or matrixA, i.e., ‖A‖ = (A · A)1/2 for

vectors,‖A‖ = (A : A)1/2 for matrices.

• ⊗ denotes the tensor product, defined by

(A⊗ B)i1...ikj1...jl = Ai1...ikBj1...jl .

• ∇ = (∂/∂X1, . . . , ∂/∂Xn) denotes the gradient operator inRn, acting to the
right. For example,

f (∇ ⊗ ∇)g = f


∂2g

∂X1∂X1
. . .

∂2g

∂X1∂Xn

...
. . .

...

∂2g

∂Xn∂X1
. . .

∂2g

∂Xn∂Xn

 .

• ⊕ denotes the direct sum of matrices, so

A⊕ B =
(
A 0

0 B

)
.

Appendix B. Order parameters for Rippled surface

Averages of some Wigner rotation matrix elements are given in figures 1–4 for the
Rippled surface, with parametrization

X3 = a
k

sin
(
kX1

)
.

The averages are functions of the nondimensional parametera.
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Figure 1.〈D2
00〉 versusa.

Figure 2.〈D2
22〉 versusa.

Figure 3.S0 = 〈D2
00〉 versusa.
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Figure 4.S2 = 〈D2
22〉 versusa.

Table 1
Elliptic integrals.

Type Definition Maple

Incomplete, first kind F(z, k) = ∫ z
0

1√
(1−t2)(1−k2t2)

dt EllipticF(z,k)

Complete, first kind K(k) = F(1, k) EllipticK(k)

Incomplete, second kind E(z, k) = ∫ z
0

√
1−k2t2√
1−t2 dt EllipticE(z,k)

Complete, second kind E(k) = E(1, k) EllipticE(k)

Appendix C. Elliptic integrals

For the elliptic integrals used in the paper, see table 1. Formulas involving elliptic
integrals were obtained with the computer algebra program Maple from Waterloo Maple
Software, and the corresponding Maple functions are given in the third column.
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