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A mathematical framework for translational Brownian motion on hypersurfaces is pre-
sented, using an imbedding of the surface and Ito diffusions in the ambient space. This in-
cludes a survey of Ito calculus and differential geometry. Computational methods for time
correlation functions relevant to spin relaxation studies on curved interfaces are given, and ex-
plicit calculations of time correlation functions and order parameters for a “Rippled” surface
are presented.

KEY WORDS: Ito diffusion, Brownian motion, hypersurface, relaxation theory, correlation
function

1. Introduction

This paper presents a mathematical framework for translational diffusion processes
on hypersurfaces, in particular, two-dimensional surfaces imbedded in three-dimensional
space. The framework is needed in studies of molecular diffusion at interfaces and spin
relaxation studies using NMR or EPR. Molecular translational diffusion along curved
interfaces may be studied using spin relaxation since the curvature of the interface intro-
duces a time-modulation of a spin-lattice Hamiltonian and, thus, becomes a relaxation
mechanism. In spin relaxation studies of heavy water or deuterated lipids the quadrupole
interaction is the dominant relaxation mechanism and is, thus, modulated by translational
diffusion along curved interfaces in the strong narrowing regime of BWR theory, cf. [1].
The time correlation function is the relevant quantity we need in order to describe spin
relaxation rates and line shapes. Translational diffusion of a particle moving along a
curved two-dimensional surface is described by a set of stochastic differential equations
which can be simulated numerically to obtain the relevant time correlation functions.
We formulate diffusion problems on hypersurfaces of arbitrary dimensi@nWe use
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the method of imbedding to construct Ito diffusions on hypersurfaces, similar to [2],
where Brownian motion on hypersurfaces is considered. Our construction for general
Ito diffusions is outlined as a remark in [3, p. 253], but to our knowledge, no one has
presented a detailed account of the method. The first account of the Ito integral as well
as stochastic differential equations on manifolds are due to Kiyosi Ito [4,5]. There is an
extensive literature on diffusions on manifolds, we refer to the monographs [3,6-9].

The paper is organized as follows. We start with a short review of Brownian mo-
tion in section 2. We show that Brownian motion is a Markov process (2), and that it is
a martingale (4). We note that it has a multinormal distribution and compute its covari-
ance matrix (6). An important scaling property is stated in (8), and we define standard
Brownian motion in (9). Finally, we give a short account for the Wiener measure.

In section 3 the Ito integral is defined, which is the fundamental tool in Ito’s sto-
chastic calculus. We give a simple example of an Ito integral in example 1.

In section 4, a special case of Ito’s formula for transformations of Ito integrals (17)
is given. This leads to the informal basic rules (19) of Ito’s calculus.

The tranformation rules in (16) lead naturally to the definition of a larger class
of stochastic processes described by Ito integrals (20)tdoharocesses, considered in
section 5.

Analogously to the transformation of Brownian motion in section 4, we consider
transformations of Ito processes in section 6. The basic result is that the transformation
of an Ito process is again an Ito process, and the transformation of coefficients in the
corresponding Ito integral (21) is given by the general Ito’s formula (25)—(27). More-
over, in case the transformation is a diffeomorphism, we may transform coefficients in
the other direction (28), (29).

We consider a more restricted class of Ito processes in section [T thiéusions,
which are solutions to an Ito stochastic differential equation (SDE) given in (31). Then
a transformation of an Ito diffusion is again an Ito diffusion, and in this case, the general
Ito’s formula (25) takes a particularly simple form (32), henceforth cdlied formula.

The drift vector and diffusion matrix of the transformed Ito SDE are computed by a
second-order scalar differential operafof33) and a first-order vector differential oper-
ator D (34) associated with the original Ito SDE. Then we state a scaling relation for Ito
diffusions, where the Ito SDE for a scaled Ito diffusion (35) is given in (36) and (38).

In section 8 we elaborate the definition of a hypersurface as a level set of a smooth
function F, and then give the construction of Ito diffusions on a hypersurface by the
imbedding method in theorem 1. The basic idea is to start with an Ito diffujon
onR", satisfying an Ito SDE (31), and to choose the diffusion matrix and drift vector in
such a way (conditions (40) and (41)) that an Ito diffusion starting on the hypersurface
remains on the hypersurface for all times, which is equivalenftgl) = 0 in the sense
of Ito’s calculus. To be noted is that the diffusions are defined in the ambient Bjace
so no local parametrization of the hypersurface is needed. Moreover, the diffusions may
be simulated using standard numerical methods for Ito SDESs.

In section 9 we define Brownian motion on a hypersurface by choosing the dif-
fusion matrix B(X) to be the projection onto the tangent space&a@3), hence, sa-
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tisfying (41), and then choosing the drift vectdX) to be the normal vector &,
satisfying (40).

In section 10 we assume that the hypersurface has a local parametrization
fxt, ..., x" 1), and want to find an Ito SDE for the local coordinatesefined by (45).

We extend the local parametrization to a local flattening diffeomorphfiget, . .., x)
defined by the property (46), define local basis vecorsnd dual basis vectorg, de-

fine metric tensors (51) and compute the coefficients of the Ito SDE by Ito’s formula (54),
transformed to the-coordinates by the chain rule (49) and the decompositions (48)
and (55). The resulting transformationsfoand D to local coordinates are given in (56)
and (59), and the resulting Ito SDE feris given in (65). Finally, we define a standard
Brownian motion in local coordinates in (66) and get an Ito SDE in local coordinates
driven by a local standard Brownian motion in (67).

As noted previously, the main objective is to compute certain time correlation func-
tions relevant to spin relaxation theory. They are introduced in section 11.

In section 12 we consider a specific surface studied in the literature, which we
call theRippled surface [10,11]. We find a local parametrization in which the standard
Brownian motion coincides with the local Brownian motion. We may then reduce the
computation of functionals of the standard Brownian motion of the Rippled surface to
a standard Brownian motion on a finite interval with periodic boundary conditions. As
a consequence we get our main result in theorem 3, a generalized Fourier series repre-
sentation of correlation functions on the Rippled surface. In particular, we get the decay
rates explicitly in (86) and also an explicit calculation of order parameters in (94).

In the appendix, order parameters for the Rippled surface are given (appendix B)
and elliptic integrals are specified (appendix C).

2. Brownian motion

In this section, we review the theory of Brownian motiorifif. This is a stochas-
tic process orR”, i.e., a mappingV : R, x 2 — R”", usually written as a parametrized
family of random variabledV, : @ — R", t € R, over some sample spa€e Physi-
cally, forn = 3 (three-dimensional space) this is a description of the irregular motion of
small particles in suspensions, on a timescale much larger then the autocorrelation time
of the velocity, cf. [12].

A stochastic procesW, is said to be a Brownian motion (with diffusion constant
K > 0) starting atXy € R” if

1. Wo = Xo.

2. It has stationary, independent increments, iW,,— W, and W,,, — W,
have the same distributions for allz, » > 0, andW,, — W,,, W,, — W,,, ...,
W, — W, _, are independent random variables for abkQg < 11 < --- < t,
k € N.
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3. For everyt > 0, W, has a Gaussian distribution with mean= 0 and co-
variance matrixC = 2Kt1, i.e.,W, = (W, W2, ..., W") have the probability
density

fin (X) = ((2)"detC)) " PeH/AX-m-C X
— (4 K1) "2 IXIP/@4KD - x o R, 1)
4. It has continuous sample paths, ife—> W;(w) is almost surely continuous.

Let us first note that sinc#, has stationary increment8;, — W, and W;_, have
the same distributions,
fwo—w, = fw_,, t>s,
hence, the incremenW, — W, is Gaussian with mearX, and covariance matrix
2K(t — s)1.
Furthermore, sinc&, has independent increments,
Twigswy, (Xo, -, Xi) = fw (Xo) fw,—wy (X1 — Xo) -+ fw, —w,_, (X — Xi—1).
Consequently, conditional probability densities can be computed as
TWigsswy, (Xo, -, Xi)
[ fwg.ow, Xo, -+, X1, Y) Y
= fw,-w,_, Xk — Xi—1)
= thk\Wto(Xklxkfl)- (2)
Hence,W, is aMarkov process. Moreover, for conditional expectations we get

Jwig,.owy, (Xo, -, Xi)
Y fwwe..w, (Y| Xo, ..., Xg_1)dY

Twy wigwiy_, (Xic | Xo, ooy Xim1) =

E(Wtklwl‘c)? R Wl‘k,]_) =

= Xi-1, )
i.e., with the usual identification of conditional expectations with functions of the condi-
tioning variables ¢,,, ..., W,_, in this case),
E(Wtk|Wtoa O] Wtk_l) = Wtk_l' (4)

Hence,W, is amartingale. Finally, (W,,, W, — W,,, ..., W, — W, _,) is Gaussian with
mean 0 and covariance matrix

C(Wl‘c)? Wl‘]_ - Wt()v R} Wl‘k - Wtk,]_) = 2Kt01 S (tl - ZO)I ®---D (tk - tk71)17 (5)

so, by the transformation properties of multidimensional Gaussian variaiilés,
Wy, ..., W,) is also Gaussian with mean 0, and the covariance matrix may be com-
puted according to

C(Wt()v Wt]_? ceey Wtk) - 21(1‘4(1‘01 @ ([l - [0)1 @ te @ (tk - tk*l)I)MT7 (6)
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where M is the matrix of the mappindR”*+tY — R**+D: (X, ..., X;) — (Xo,
Xo+X4,..., Xo+X1+---+X}). This covariance matrix consists of/a+1) x (k+1)
block matrixC;; where each block';; is ann x n matrix given byC;; = 2K tming, j)1 -
Consequently,

E(W, - W,) = 2Kn min(s, t). (7

Moreover, Brownian motio; onIR” with diffusion constan starting atXy has
the scaling property that

Wr = LWTr (8)

is a Brownian motion ofR” with diffusion constant LT, starting atL X,. Thus, we
may choose time scalg such that the diffusion constant i§ = 1/2, and then we
say that we have gandard Brownian mation. In this case we denote the conditional
probability density

|X — Xol?
2(t — to) ) ®)

wheret, 1o € R, and X, Xg € R". The rigorous mathematical definition of Brownian
motion was given by Norbert Wiener in 1923 [13], where Brownian motion is defined
in terms of a measure on the space of continuous patfi®' pand this is usually called
thecanonical Brownian motion. Let us consider the definition of the Wiener measiiire
in some detail. The Wiener-measurable sets are generateds(@dgebra) by sets of
paths specified by the condition that they pass through a finite humber of measurable
setsEq, ..., E, in R" (Borel sets) at a finite number of specified time instants § <

. < t, and the Wiener measure of suchyéinder set is computed by the formula

W({a) w(ty) € Eq, ... ,a)(tk) € Ek}) =

/ / p(X1, 11| Xo, o) p(Xo, t2 | X1, t1) -+ p(Xi, ty | Xp—1, tr—1) X1 - - - dXy.
Eq Ey
(10)

The Wiener measure defines a Markov process on the path space with transition function
p(X,t| Xo, tg), namely, thecoordinate process

W, (o) = o(1). (11)

For more details on Browian motion and Wiener measure, see, for example, [12,14-16].
Note that the Wiener measure assigns valuesttoof continuous paths, not indi-

vidual paths themselves, and that singleton &ejhave Wiener measure zero. A prop-

erty of a path is said to besample path property for Brownian motion, or to holélmost

surely, if the property holds for all paths except for a set of paths with Wiener measure 0.

For example, the famous Lévy—Hélder condition (cf. [17, p. 36] and [16, p. 30]) says that

lim sup M —

tro—11=e\0,0< 11 < <1 28 In(l/E)

p(X,1 | Xo,t0) = (22 (t — 10)) " eXp( -

(12)
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is a sample path property. Also, it follows from the Lévy condition above that to be
continuous, nowhere differentiable, and of infinite variation is a sample path property.

3. Theltointegral

We would like to define a path integral

Ii(w) =/ [z, w) dW: (v) (13)
0

of anm x n-matrix-valued functionalf (t, w) over a continuous patd, but since such

a path is almost surely of infinite variation, the usual Lebesgue—Stieltjes definition does
not apply. However, the sums do converge in a mean square sense, more precisely, in
the space of square-integrable functions with respect to the Wiener measure, provided
the functional f (r, w) depends only on the values #f;(w) for s < ¢ in a precise,
measure-theoretic sense (the functional is said tadapted to W;) and

/0 “f(‘l,’, ) szr < 00 (14)

almost surely, cf. [18, p. 35] and [6, p. 24]. The Ito integral was first introduced by
Ito in [4]. The convergence of the approximating sums is a consequence tothe

isometry [18, p. 26—29]
2 t )
E(I );g(/ 1£ e, 0 dr), (15)
0
where E(X) denotes the expectatiohX (w) dW (») of the stochastic variabl&, and

| - || denotes the usual vector or matrix norm, ijf | is the sum of the square of each
element. We consider a simple example.

/ (. @) dW, (@)
0

Example 1. Let W, be a standard one-dimensional Brownian motion. Consider the
Ito integral [y W, dW, and the approximating surf, = Y %_g W, (W, — W:),
wheret; = jt/k,j = 0,1,...,k. The approximating sum may be written &s =
W2/2—a/2, wherea = Y-\ _4(W, ., — W, ))2. Using the fact thaf (W1 — W:,)?) =
E(ijﬂft/_) = Tj41 — T, We getE(a) = t. To compute the variance af, we first
geta — E(a) = Z’;;é(W,M — W,j)2 — (tj4+1 — 1;). Then, expanding the square
of the sum inE((a — E(a))?) and using the fact thalt’, has independent increments
we get the variance af, Z’;:OE(((W,/.+1 — W;)? — (141 — 7;))?. Finally, expand-
ing the squares and using the fact tHat(W,,,, — W:)* = 3(zj41 — 7;)* we get
E((a — E(a))® = 2Y_3(tj4+1 — 7;)% Hence, the variance converges to Gas- oo,
and the Ito integral iy W, dW, = W2/2 — E(a)/2 = W?/2 —t/2.
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The definition off; in the mean square sense for each fixed 0 is analogous to
the definition of the classicdl?-spaces. Thus, the Ito integrhlis an equivalence class
of R™-valued functionals on the continuous paths, &ri@) is almost surely defined.

The Ito integrall; defines a stochastic process®f, if f is anm x n matrix. The
procesd, is easily seen to be adapted, and from the important fact timamartingale
(cf. [18]) it follows that continuity with respect tois a sample path property fér (one
says thatl, hascontinuous sample paths), cf. [6, p. 24].

4.  Transformations of Brownian motion

Obviously, the method of computing Ito integrals from the definition, used in ex-
ample 1, is rather awkward. We should have an analog of the fundamental theorem of
calculus. This is provideed by the special case ofltbdormula (17) below. Ifg is a
functionR x R" — R with continuous second derivatives, afitt, ) = g(t, W, (w))
in the Ito integral above, then it follows by the approximation procedure defining the Ito
integral and properties of the Brownian motion, that

0g

¢(t. W, (@) = (0, 0) + / ( -
0 t

1
(t, We(w)) + 5(v -Ve)(z, W,(w)))dr

+ /O (Vo) (r. W (@)) - dW, (). (16)

This formula is a special case to's formula (25) below, and is usually written in
differential form,

g 1
dg(t, W,) = (E(Z’ W) + E(V -Vg)(e, Wt)>dl‘ +(Vg)(t, Wy) - dW,. (17)
It is convenient to summarize this formula in terms of a Taylor expansion

og 14%g
dg=-2dr + (Vg) - dW + = —2 dr?
g ot +(Ve) +28t2

1/_9 1
n §<va—f> AW, dr + 5(V @ Vg) :dW, @ dW,

1
+6(V®V®Vg)::dW,®dW,®dW,+--- (18)

and the followingbasic rules for the Ito calculus:

Example 2. We have now a simpler method to compute the inteﬁ’;ad/t dw,. Choose
g(t, X) = X?/2 (which would be a primitive function of our integrard in classical
calculus). Ito’s formula (17) yield®?2 = g(W,) = Otg/(Wt) dw, + (1/2)g" (W) dr =

Jo We dW, + (1/2)z.
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5. Itoprocesses

The formula (17) leads to the notion of arrdimensionallto process driven by
n-dimensional Brownian motiofV,, which is anm-dimensional stochastic proceXs
given by a sum of a usual integral and an Ito integral,

t
X, =Xo+ / A(t, w)dr + B(t, w) - dW,. (20)
0

This is usually written is the differential form
dX;, = A(t, w) dt + B(t, ) - dW,. (22)

Here, A is a vector, thalrift vector, and B is a matrix, thediffusion matrix, of the Ito
process. For a review of the tensor notation used, see appendix. For the integral of the
right-hand side of (20) to be defined, we require that

/O |G, )| + | B(r. 0)|’dr < 00 (22)

for all t > 0 almost surely, and that, B are adapted, cf. [18, pp. 34 and 44].

6. Ito'scalculus

Suppose thak, is anm-dimensional Ito process (21), and that: R” — R*
is a twice continuously differentiable vector-valued function. Then it follows from the
definition of the Ito integral and the basic rules (18) and (19) that x(X,) is a
k-dimensional Ito process driven by the samdimensional Brownian motioV, as
X,, and satisfying the equation

dx, = dX, - (V®x)(X,) + %(dX, ®dX,): (Ve Vx)(X), (23)
and (19) amounts to
dX, ® dX, = (Adr + B - dW,) ® (Adr + B - dW,) = (B - BT) dt. (24)
Hence, we obtain
dx; = a(t, w) dr + b(t, w) - dW,, (25)

sox, is an Ito process oR* with drift vector
1 T
a(t,w) = A(t, w)- (VRx)(X,(w)) + E(B(t, w)-B'(1,0)) : (VOVQx)(X,(»)) (26)
and diffusion matrix

b(t,0) = (VRx) (X;(») - B(t, ). (27)

In casem = n andx is a diffeomorphism, (25) provides a change of variables formula
for Ito processes, and we say thais the Ito process obtained froi by the change of
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variablesx = x(X). In this casey¥ ® x is invertible, and we can computg B in terms
of a, b, namely,

B(t,») = JT(X,(»)) - b(t, ®) (28)
and
At,0) = a(t, ») - J (X, (w)) — %(B ‘BT)(t,0): T (X,(@) - (V®x) (X, (), (29)
whereJ is the Jacobian ok +— x,
J(X) = (V®x)HX).

In casex is a scalar functiong = 1), Ito’s formula can be written

dx, = dX, - (Vx)(X,) + %(B -BT)dr:(V® Vx)(X)). (30)

7. ltodiffusions

If A and B in an Ito processX; in (21) depends only oX, (w) itself, we say
that (21) is arlto stochastic differential equation:

dX,(®) = A(X,(0)) dt + B(X,(w)) - dW,, (31)

and we say thak, is anlto diffusion. Under natural conditions oA and B, the exis-
tence and uniqueness of initial value problems for an Ito diffusion satisfying (31) can be
established. We refer to [18] for details.

Suppose tha¥; is an Ito diffusion satisfying (31), ang, = x(X,) defined as
above. Then;, is also an Ito diffusion, satisfying the Ito stochastic differential equation

dx, = Lx(X,) dr + dW, - Dx(X,), (32)

whereL and D aredifferential operators defined by

Lx(X) = AXK) - (V®0(X) + 5(BO - BT00): (VO VENX)  (33)

and
Dx(X) =B - (V®x)(X). (34)

Moreover, X; fullfills a scaling relation similar to the well-known Brownian scal-
ing, namely, that the process

is equal in distribution with an Ito diffusiof, satisfying the Ito equation

dX, = A(X,) dr + B(X,) dW,. (36)
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Here W, is a standard Brownian motion obtained by the Brownian scaling
W, = T7Y?Wr,, (37)
and the scaled drift vector and diffusion matrix is

A(X)=LTA(X/L),  B(X)=LTY?B(X/L). (38)

8. Itodiffusionson hypersurfaces

By a smooth hypersurface R” we mean a level séf~*(c) of a smooth function
F:R" — R such thatVF(X) # 0 forall X € F~1(c¢) (cf. [19]). Hence, with this
definition all hypersurfaces are orientable (cf. [20, p. 146]). Moreover, a hypersurface
in R" is a smooth imbedding iR” of codimension 1 as a consequence of the implicit
function theorem (cf. [21, p. 31]). The values: R for which F~1(¢) is a hypersurface
are calledregular values for F. By Sard’s theorem (cf. [22, p. 11]), the set of values
which are not regular has Lebesgue measure 0. Hdficky) is a hypersurface for a
dense set of values € R. We assume henceforth that= 0 is a regular value, and
denoteF~1(0) by M. The following theorem gives a necessary and sufficient condition
for the Ito diffusionX; in (31) to be onM.

Theorem 1 (Imbedding method). Assume that, is an Ito diffusion onR”" given
by (31), and that O is a regular value for a given smooth functialR* — R. Let
M = F~1(0), and let be defined by

VF(X)

NX)=——7—
0 IVEX)

(39)

the corresponding normal vector field, defined in a neighbourhoadd.ofAlso assume
that Xo € M. ThenX, € M for all + > 0 almost surely, if and only iff and B in (31)
fulfill the conditions

AX) - N(X) + %(B(X) BT(X)): (V® N)(X) =0 (40)

forall X e M, and
BT(X)-N(X)=0 (41)

for all X € M. Moreover, if (40) and (41) hold, the differential operatdrsdefined
by (33), andD, defined by (34), are well-defined differential operatorsipn

Proof. Letx; = F(X,). Then by Ito’s formula (32),d = LF(X,) dt+dW,- DF(X,).
By uniqueness of solutions to Ito SDE’s (cf. [18}), = 0 almost surely if and only if
dx; = 0. This is equivalent td. F(X,) = 0 andDF (X;) = 0 by the independence of
the Ito differentials &, and the ordinary differential:dinterpreted as Ito integrals, as
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usual). ObviouslyD F(X) = 0 onM is equivalent to (41) in view of (39). Furthermore,
provided (41) holdsL F(X) = 0 on M is equivalent to (40) since

(V@N)—<V®VF+V< ! )@VF)
IVF] IVF]
and

(B-B"): <v<||v—lF||) ® VF) = (BT - V(ﬁ)) -(BT-VF)=0. (42

If ¢:R" — R is a function which is constant oM, thenV¢ = N on M for
some smooth functiogy : R" — R, and

Do =vB"-N=0

on M by (41), which shows thab is a well-defined linear operator @d. Furthermore,
1 1
L¢:¢<A.N+§(B-BT):(V®VN)>+§(BT-B):(V1//®N):O

on M by (40) and a similar computation as (42), which shows fh# a well-defined
linear operator o/. This proves the theorem. a

Remark 1. The condition (41) means that the rangeBiiX) should be in the tangent
space ofM at X for all X € M, and the condition (40) means a specification of the
normal component of the drift vector, in terms of the diffusion maBix Hence, the
diffusion matrix is singular (has rank — 1), and the probability density of; is a
singular measure, supported on the hypersurface (in fact, having a smooth probability
density on the surface). Also, we see that the conditiongl @nd B depends onv,

hence, independent of the particular choice of functfomepresentingf as a level

set. With this imbedding method, Ito diffusions #hmay be numerically simulated by
standard methods for Ito diffusions R, cf. [23,24]. Applications of this method to
problems in relaxation theory are in progress and will be reported elsewhere. Related
work of the authors may be found in [25].

9. Brownian mation on hyper surfaces

In this section we use the imbedding method of theorem 1 to define a natural gen-
eralization of standard Brownian motion to a smo¢th— 1)-dimensional imbedded
surface inR". By the scaling relation in section 7, we may also define Brownian motion
with a diffusion constant on the hypersurface.

To define Brownian motion oM, we chooseB(X) to be the projection onto the
tangent plane of the level sgf of F atX, i.e.,

B(X)=1— N(X)® N(X). (43)
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Clearly, this choice oBB satisfies (41). Then we choogg X) be the a normal vector
field, hence, completely specified by (40), i.e.,

1
A=—3(BX)- BT(X) : (V& N)X)N(X). (44)

The restriction of the vector-valued first-order operdboand the scalar-valued second-
order operator 2 to the level seM are called theovariant derivative or gradient on M,
and thelLaplace-Beltrami operator on M, respectively.

10. Local coordinates

So far we have considered tlve — 1)-dimensional hypersurface imbeddedgi,
as an implicitly defined surface, which often is convenient. However, sometimes we
are given local coordinates for the imbedded hypersurface, which we consider in this
section.

We henceforth assume th&i is a standard Brownian motion o, as defined in
section 9. Letf: U — M be a local coordinate patch ad. We will calculate the Ito
equation forX, in local coordinates, i.e., the Ito equation figrwhere

SO =X, (45)

Given the local parametrizatiofi(x?, ..., x"~1) € R" and a function : R” — R such
that F(f(x%,...,x" 1) = 0, we extendf to a mappingR® — R”" such that in a
neighbourhood off (U),

F(f(xl, XL x”)) =x", (46)
i.e., f(-, x") is a parametrization of the level set Bfat levelx” (for all x" in some open
interval containing 0). The extensiof(x?, ..., x") is defined as

f(xl, e x”) = ¢(x"),
whereg is the unique solution to the initial value problem

do(r) _ VF(¢)
dr IVF(p)I1

$(0) = f(xt, ..., x"h).

Next, we do a change of coordinates by the diffeomorphfsoonstructed above.
To compute derivatives in the-coordinates we apply the chain rule,

Vx=(Vx®x) -V, =(V,®X) - V,.

Let the vectorsfi, ..., f, be the row vectors oV, ® X, i.e., f; = df/dx/. Clearly,
fj(xl, ...,x"), j =1...,n— 1, are tangent vector fields to the level séts= x",
and f,(x%, ..., x") is a normal vector field to the same level set. Moreoyer, .., f,
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are linearly independent, and hence, constitute a frani® jiisince f is a local diffeo-
morphism. We define the dual bagfs, ..., f” as the column vectors ¢V, ® X)™1,
hence,

frefi=98, (47)

and we have the natural decomposition of the identity matrix,

I=Y f'efi=) fief. (48)
i=1

i=1
Moreover, the chain rule can be written

9 .0
—=f;-V, j=1...,n, orequivalently, V = f—, 49
— =1 y n g y Zl flog 49
Also, differentiation of (47) yields
afi i afj
= 50
axk f] f axk ( )
The matrices
G=(VVRX)- (VeX)" and G (51)
are called the contravariant and covariant metric tensors, and we denote their elements
gij = fi- fi gl =r-fl (52)
The metric tenso6 is thus decomposed into a “tangential” and a “normal” part
G=G,8G, = , 53
o= (9 o 3

whereG  is the usual covariant metric tensor of the level set.
We have seen by Ito’s formula (32), applied to the Ito diffusigrand the mapping
x(X), thatx, is an Ito diffusion with drift vector and diffusion matrixb given by
a(x) = Lx(X(x)),  b(x) = Dx(X(x)). (54)

Hence, to compute andb we must transfornd. and D to thex-coordinates. From
the decomposition (48) and the fact théi, ..., f,_1} as well as{ f*, ..., "~} span
the tangent space we have that the projection onto the tangent space is

n—1

n—1
B=)f'®fi=> fi®f (55)
i=1 i=1
The operatoD in local coordinates is then

n ' n ) n ) a
D=B"V=) (/&) V=) f/(fiVV=> fl5=  (56)
j=1 j=1

j=1
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To transformL to local coordinates, first note that sinBds a projection we have
BT = B andB? = B, hence,

B-B" = B. (57)

By a similar computation as (42), we may writein the form
1
A=—3(B- BY): (V® ") fa (58)

and then use (57), (48), (49) and (50) to compute the first-order teiin of

n—1 n

DI

i=1 j=1

A similar computation shows that the second-order terrh of

1 T.V v nln y afz ka
E(B.B)'( ®V) = Zzg 8x18xk_k2:8x1 f

11]—

Hence, when adding the first- and second-order terms to coniptie 3/0x"-terms
cancel and we get

n—1
1 ! 3, 9
_ - ij N ey 59
2 Z & <8x i9xJ kzl oOx/ Bxk> (59)

i,j=1

The absence of/d0x" is a reflection of the fact thak is a differential operator

on M. We introduce the common notation
dfi
k9 ok

ry=-5-f (60)
which are commonly called theéhristoffel symbols. Hence, in view of the decomposi-
tion (48),

Vi

W;' =Y Tk fi. (61)
k=1

Now we may compute the drift vector and diffusion matrix in local coordinates,
1 n—1
a=Lx= —5 Z g”l”f‘jek (62)
i,j,k=1
and

n—1

b=Dx=) f'®e, (63)
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where(es, ...,e,) = 1,i.e.,e;, j = 1,..., nis the standard basis i'. Miraculously,
the Christoffel symbols may be computed from the metric tensor components,
1 981 0gil 08ij
Tk — Zgkt (281 L 280 64
i = 28 (Bxi + dx/  9x! (64)

Substituting (62) and (63) in (54) and using (48) and (52) we get the following Ito
equations for the local coordinates of a standard Brownian motia¥Won
, 1. . y
dx, :—EF;ngkdz+g”(fj-th), i=1...,n—-1 (65)
This is an(n — 1)-dimensional Ito equation driven by ardimensional standard Brown-
ian motion. For computational purposes it is advantageous to reformulate it to an Ito

equation driven by a: — 1)-dimensional standard Brownian motion. To this end, let
the Ito diffusionw;, in the patchl/ be defined by

dw! = (gl/z)l.j £ dw,, (66)
where((g¥/?);;) = G2 is the symmetric positive square root@f Then
dw! dw® = (gl/z)ij (gl/z)klgjl dr = s dr.
Consequentlyw, is a Brownian motion in the local coordinate patch, cf. [18, p. 145].
Hence x; is given by the Ito equation
d’ = —%rék g dr + (g%2)" dw, (67)

J

where((g¥?)") = (G™H)Y2 = G~1/? is the symmetric positive square root@f*.

11. Correlation functions

Interaction of the anistropic molecular environment with an ensemble of nuclear
spins whose is described by a semiclassical Hamiltonian, which consists of spin oper-
atorsA, acting on spin degrees of freedom (wave functions), and classical lattice func-
tions F', introducing stochastic time dependence in the Hamiltonian. Both are expressed
in spherical tensor componems, F/, k = —1,...,1,andl =0,1,2, ..., such that

1
H@n =) Y (-D*AL,F . (68)

I k=-I

The spherical tensor components could be evaluated either in a fixed laboratory
frame, in which the spherical tensor components of the tensor opetaioe constant,
or in a fixed molecular frame, in which the spherical tensor components of the lattice
function are constant. Assume that the components in (68) are evaluated in the labo-
ratory frame. The lattice function components are then stochastic functions because of
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molecular reorientation and translations [26—30]. It is convenient to introduce a local di-
rector framed on the surface where the surface normal defineg-dods of thed-frame.

Local molecular reorientations are then taken into account by the Euler afgles
describing the rotation from the director frarieo the molecular fixed principal frame

M, whereas the reorientation due to lateral diffusion is taken into account by the Euler
angles2; , for the rotation from the lab frame to the local director framé. The lab
frame spherical tensor componentsroin the lab frame are, thus,

1
Epl0 =) Dyi(Qwa®) D (ap ) B
kt=—1
Here the superscripts refer to components in the lab frambe local director framé
and the molecular fixed fram¥, respectively.
Generally a Hamiltonian which is only modulated by translational diffusion along
a surface is obtained by introducing a partially averagiedenoted by an overbar,

1

Fil(t)y= )" DL(QLa®)) Dl (Qap) F"
kt=—1I

This formulation presupposes a time scale separation between local reorientation and
lateral diffusion [28]. Furthermore, symmetry arguments often apply, resulting in

ZD Q) F" = 810Dg5(Qum) Fy !
=—1

when a cylindrically symmetric tensa?™-! is assumed. Thus, only one spherical com-
ponent of the partially averaged tensor is nonzero and modulated as the spin bearing
molecule is moving along the curved interface. This stochastic time-dependent process
is, thus, described by the orientation of the local normal present in the Wigner rotation
matrix elementD!* (Qp(1)).

With these observations, the Hamiltonighcan be interpreted as a noncommuta-
tive Fourier series on the rotation group [31, p. 256], where the molecule dynamics enter
through the orientational Euler anglgs ,:

Hp=)_ Z( D* A D (Quan) o' Dlo(QLa(0)

1 k=-—1
= @I+ Dr(HI)D' (Qrq(1))). (69)
1
where the Fourier coefficients are
AL DEs(Qun) Fy" 8o
2 +1)

H(I)y = (-1)F (70)
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Remark 2. The Wigner rotation matrices are irreducible representations of the rotation
group, so by the “great orthogonality theorem” of Weyl [32], elements of the matrices
are orthogonal with respect to the invariant measure of the rotation group,

21 +1
812

2 2 T
/ / / D} () D () sin(B) dB da dy = 5;,8;18;, (71)
0 0 0

and the Fourier coefficients &f (t) = H(Q(t)) may be computed by

2 27 T
ﬁu):glz fo fo foﬁ(a,ﬁ,yw”(a,ﬁ,y)sin(ﬂ)dﬁdady, (72)

whereA™ denotes the conjugate transposetof.e., (AT);; = A%, cf. [31].

Experimental data are often connected to autocorrelation functions of the lattice
functions (for example, in the regime of the BWR theory of spin relaxation, all spin
relaxation rates are determined in this way). This motivates the study of correlation
functions of the following general form:

Cron (5 1) = (Dy0(Q20) D5 (21)), (73)

mn

whereQ; = («;, B;, 0) is the stochastic process obtained by computing spherical an-
gles (B, @) for the surface normal a;, the canonical Brownian motion oM, with
probability distributionp (X) for Xo on M.

12. TheRippled surface

In this section we will compute relevant correlation functions for the Rippled sur-
face [10,11] defined by the parametrization

(X%, X?) > (Xl, X2, %sin(kxl)) (74)
It is periodic with period 2/ k in the X *-direction.

Theorem 2.
1. Define the functionp : R — R by
E(ia) — E(co9kX),ia)
k

¢(X) =

forO< X < 7/k,and

R

(75)

k k
otherwise. Thew is smooth, strictly increasing and

¢'(X) = 1+ a?2coR(kX) (77)
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and
2mE (ia)

. (78)

¢<X + %) = p(X) +

forallm € Z.

2. Let X, be a standard Brownian motion a#. Define the mapping : R? — R3
by

et 2?) = (¢1(x1),x2, %sin(kqjl(xl))). (79)

Then f is a parametrization of the Rippled surface (74), and the pracess
defined byX, = f(x,) as in section 10 is a two-dimensional standard Brownian
motion.

Proof. 1. Equation (77), valid for # mx/k,m € 7Z, is obtained by differentiation
of the elliptic integral and simplification. Furthermoggjs continuous aX = mx/k,
m € Z, since

_ ) m/k 2E(ia)
_ — =
m 00 - lim $(x) /0 Vit azoosknzd = =2, (80)

which also proves (78). Sine# (X) is extended toX = mn/k,m € Z, by (77) as a
continuous function, it follows that the formula (77) for the derivativepas valid for
X =m¢/k, m € Z, also. Henceg’ is smooth. Moreoverp is strictly increasing and
bijective, since the derivative is bounded between two positive constants.

2. Clearly, (79) is a reparametrization of (74). We get, in the notation of section 10,

1
1 .2 dgp* 1 .2 °
filx®, x%) = 0 e o x)=11]. (81)
—a cogket(xh)) 0

The tangential part of the metric tensor is

Glz(fl'fl f1'f2>

far 1 f2r f2
B ((1 + a?cog (2r X1 (x1)) (dp~1/dx1)? 0)
B 0 1
10
B <o 1) ’ (82)
where the last equality follows from (77), since
do~t 1 1

dl T (d/dXY) 1+ aZcog(kXD)
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Hence,Ff‘j = 0 by (64), and subsitution in (67) gives the Ito equation
dx, = dwt

for x;. Hence, d, is a standard Brownian motion. O

Remark 3. HereE (ia) andE(z, ia) denotes ellipic integrals, see table 1 in appendix C,
and cf. [33] for more information. Depending on the choice of branch cutg& foria)

atz = +1, the formula forg (X) may have singularities at = mx/k, m € Z, but a
continuous branch can always be computed by the formulas (75) and (76), \Where
denotes the largest integerX.

We are now ready to formulate the main theorem of this paper, a representation
formula for correlation functions on the Rippled surface.

Theorem 3. Let ¢(X) = ¢(XY) andr(X) = r(X') be complex-valued functions de-
fined on the Rippled surface (74), independentXdfand periodic inX* with period
27/ k. Then the correlation function

Clg, N @) = {g(Xo)r* (X)) (83)

has the generalized Fourier series representation

o]

Clq.rnN® = Y culpg)c,re’, (84)

m=—00

where the Fourier coefficients are given by

o (q) = % /Ozn/k eﬁ(Zﬂi/Z)mqb(Xl)q(Xl) dqb(Xl) (85)

and
Do = 2”;2’"2 (86)

and
. 4151(c ia) -

and
p(X*) =Z/OO fxO<Xl+%,X2> dx?2. (88)

jez Y~

Usually we choosgx, such that the “reduced” probability distributignon the interval
[0, 27/ k] is constantp(X?') = k/27.



84 L. Persson et al. / Ito diffusions on hypersurfaces

Proof. First note that Rippled surface is periodicaih with period¢. Sincex! = w!
andx? = w? are independent, and we are computing correlation function of quantities
which are independent af, we can average over one-dimensional trajectorfesnly.
Moreover, by the periodicity in? it suffices to compute trajectories on the intefi@l¢]

with periodic boundary conditions, and initial distributiprobtained by summing over

all periods (88). For one-dimensional Brownian motion with periodic boundary condi-
tions on the finite interval0, ¢] there is a well-known representation of the conditional
probability densityp(x, t|y, 0) as Fourier series, namely,

p(x,t]y,0) = %mzzoo eZﬂim(xfy)/lszzmzt/ZZ' (89)
Consequently,
(0l (D)= [ [ pletar15% 0@ 0H)a(e7 () (97 () det oy

1

x( / e a0 &) |

0
Making the change of variablest = ¢(X1), y! = ¢(Y?) yields the representation
formula (84). g

Remark 4. If we choosep, g to be Wigner rotation matrix elements like in the corre-
lation functions (73), they can in general can be written in terms of reduced rotation
matrices (cf. [34, p. 22—-24])

D, B) = ed%(B),

and for the Rippled surface we get

, 1(2- azcos(kX1)2>
Doo=73 (1 + a2 cogk X1)2 (90)
V6 cogkX?t)
Dio= 2 (1 +a? cos(kX1)2>’ (1)
V6 [ a?cogkXxt)?
D= (1+ a? cos(kX1)2>' (92)

Using the periodicity (78) we may write the Fourier coefficients (85) as

1 w/k ) 1 P
_ (—27mi/Ome, (X1 1 _a\m 1, 1
cm(q)—ﬁfo e (q(X)+( 1) q(x +k>>d¢(x), (93)
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whereg is given by (75). In particular, for the Wigner rotation matrix elements (90) we
see that

Cm (DJZO) =0

if m and;j have the opposite parity (odd/even or even/odd). In particularzfer 0 we
can obtain the averages

27 /k
=2 [ b1 oo ax
in closed form,
2 _1. 3K (ia) — E(ia)
<D°°>_2( E(ia) ) ©4)
(Df))=0, (95)
V6 [ E(ia) — K (ia)
2y _ M2V — AV
(P2l = < E(ia) ) (%6)

For definitions of the elliptic integralg andK, see appendix C. Plots of these aver-

ages as functions af can be found in the appendix. The integrals were obtained by first
computing primitive functions symbolically (with Maple V Release 4) and then taking
differences, taking into account the discontinuities of the primitive functions=atl/2.

Appendix A. Notation

e R denotes the set of real numbers.

o R" ={(x1,...,x,): x1,...,x, € R} denotes the-dimensional space, whene
is a positive integer. The dimension of a hypersurface-is1.

e R, = {x € R:x > 0} is the set of positive real numbers.
e Z denotes the set of integers.
e | x| denotes the largest integer which is less than or equal to the real number

e z* denotes the complex conjugate of the complex numbbr case; is a vector
or a matrix,z* denotes elementwise complex conjugation.

e W, denotes a Brownian motion i&", with componentsW!, ..., W").
e [ is the identity matrix, with dimension evident from context.
e w is a sample in a probability space where random variables are defined. For
canonical Brownian motion oR", w is a continuous path dR” (i.e., a contin-
uous mapping : R — R").
e E(X) or(X) is the expectation of the random variabie

e p(X,t | Xo, to) is the conditional probability density for a standard Brownian
motion, defined in (9).
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e - denotes a general tensor contraction product, applicable to two vectors (ordi-
nary scalar product), a matrix and a vector (ordinary matrix product), defined in
general by

(A - B)il...ik_ljz...jl = § Ail...ik_lmijg...jj'
m=1"

e : denotes a double contraction,

n

(A : B)il»-»ik—ZjB-»-jl = E : Ail»-»ik—zmlmzB’"l’"2j3»-»jl‘

mq,mp=1

:: denotes a triple contraction (analogous)to

Al denotes the norm of the vector or matd i.e., |A|| = (A - A)Y? for
vectors,|A|| = (A : A)Y? for matrices.

® denotes the tensor product, defined by

(A® By ivjy.jy = Aig..ix Bjy..ji-

V = (3/0X*%,...,8/0X") denotes the gradient operator i, acting to the
right. For example,

s _ %8
axlaxl T axlaxn
fVeVig=f : :
82g 82g
aXnaxl T 9xXnaxn

e @ denotes the direct sum of matrices, so
A O
A®B = ( ) |
0O B

Appendix B. Order parametersfor Rippled surface

Averages of some Wigner rotation matrix elements are given in figures 1-4 for the
Rippled surface, with parametrization

X3 = % sin(kXx?).

The averages are functions of the nondimensional parameter
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Table 1
Elliptic integrals.

Type

Definition

Maple

Incomplete, first kind
Complete, first kind
Incomplete, second kind

Complete, second kind

F(z, k)

K(k) = F(L k)
E(. k) = £ VJ}ZZ dr

Ek) = E(L k)

z 1
S S —
Jo VA=12)1-k2%2)

EllipticF(z,k)

EllipticK(k)
EllipticE(z,k)
EllipticE(k)

Appendix C. Ellipticintegrals

For the elliptic integrals used in the paper, see table 1. Formulas involving elliptic
integrals were obtained with the computer algebra program Maple from Waterloo Maple
Software, and the corresponding Maple functions are given in the third column.
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